6 resultados para cell DNA

em Aston University Research Archive


Relevância:

70.00% 70.00%

Publicador:

Resumo:

There appears to be a paucity of data examining the effect of dietary antioxidants on levels of oxidative DNA damage in vivo, limiting evidence-based assessment of antioxidant efficacy, mechanisms and recommendation for optimal intake. We have examined levels of 8-oxo-2'-deoxyguanosine (8-oxodG) in mononuclear cell DNA, serum and urine from subjects undergoing supplementation with 500 mg/day vitamin C. Significant decreases in DNA levels of 8-oxodG were seen, correlating strongly with increases in plasma vitamin C concentration. Furthermore we established a timecourse for sequential, significant increases in serum and urinary 8-oxodG levels. These results illustrate, for the first time in humans, the kinetics of 8-oxodG removal and processing in vivo, suggesting a role for vitamin C in the regulation of DNA repair enzymes and thereby demonstrating a non-scavenging antioxidant effect.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The oxidative base lesion 8-oxo-deoxyguanosine (8-oxo-dG) has been identified in DNA isolated from normal tissue and may occur at elevated levels during disease. However, the use of phenol during DNA extraction may artificially elevate the detected levels of this lesion. Herein, we have performed a comparative methodological study using both pronase E and phenol extraction techniques; native or oxidatively stressed DNA was isolated to determine the validity of each extraction technique for the subsequent determination of 8-oxo-dG. Whilst the yields of DNA were comparable, after pronase E extraction there was no detectable induction of 8-oxo-dG in reextracted naked DNA or peripheral blood mononuclear cell DNA that had been oxidatively stressed. However, phenol extraction enhanced the basal levels of 8-oxo-dG detected, and also induced a significant increase in levels of the modified base after exposure to oxidative stress. The latter was dependent on the presence of foetal calf serum in the extracellular medium. We have confirmed that phenol extraction sensitises native DNA to subsequent oxidative damage. In addition, this work shows that the extent of sensitisation occurring during phenol extraction varies with the degree of oxidative damage already incurred and infers that labile guanine sites generated during oxidative stress may be detected as 8-oxo-dG residues after phenol extraction.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Neurons in the developing brain die via apoptosis after DNA damage, while neurons in the adult brain are generally resistant to these insults. The basis for this resistance is a matter of conjecture. We report here that cerebellar granule neurons (CGNs) in culture lose their competence to die in response to DNA damage as a function of time in culture. CGNs at either 1 day in vitro (DIV) or 7 DIV were treated with the DNA damaging agents camptothecin, UV or gamma-irradiation and neuronal survival measured. The younger neurons were effectively killed by these agents, while the older neurons displayed a significant resistance to killing. Neuronal survival did not change with time in culture when cells were treated with C2-ceramide or staurosporine, agents which do not target DNA. The resistance to UV irradiation developed over time in culture and was not due to changes in mitotic rate. Increases in DNA strand breakage, up-regulation of the levels of both p53 and its phosphorylated form and nuclear translocation of p53 were equivalent in both older and younger neurons, indicating a comparable p53 stress response. In addition, we show that treatment of older neurons with pharmacological inhibitors of distinct components of the DNA repair machinery promotes the accumulation of DNA damage and sensitizes these cells to the toxic effects of UV exposure. These data demonstrate that older neurons appear to be more proficient in DNA repair in comparison to their younger counterparts, and that this leads to increased survival after DNA damage.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Regular aspirin intake is associated with a reduction in the incidence of colorectal cancer. Aspirin has been shown to be cytotoxic to colorectal cancer cells in vitro. The molecular basis for this cytotoxicity is controversial, with a number of competing hypotheses in circulation. One suggestion is that the protective effect is related to the induction of expression of the DNA mismatch repair (MMR) proteins hMLH1, hMSH2, hMSH6 and hPMS2 in DNA MMR proficient cells. We report that treatment of the DNA MMR competent/p53 mutant colorectal cancer cell line SW480 with 1 mM aspirin for 48 h caused changes in mRNA expression of several key genes involved in DNA damage signalling pathways, including a significant down-regulation in transcription of the genes ATR, BRCA1 and MAPK12. Increases in the transcription of XRCC3 and GADD45alpha genes are also reported. Regulation of these genes could potentially have profound effects on colorectal cancer cells and may play a role in the observed chemo-protective effect of aspirin in vivo. Although a correlation was not seen between transcript and protein levels of ATR, BRCA1 and GADD45alpha, an increase in XRCC3 encoded protein expression upon aspirin treatment in SW480 cells was observed by immunoblotting, immunofluorescence and immunohistochemical analysis. This is the first report of XRCC3 gene transcription and encoded protein expression being susceptible to exposure to the non-steroidal anti-inflammatory drug, aspirin. Furthermore, this study indicates that alterations in gene transcription seen in microarray studies must be verified at the protein level.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background - Plants have proved to be an important source of anti-cancer drugs. Here we have investigated the cytotoxic action of an aqueous extract of Fagonia cretica, used widely as a herbal tea-based treatment for breast cancer. Methodology/Principal Findings - Using flow cytometric analysis of cells labeled with cyclin A, annexin V and propidium iodide, we describe a time and dose-dependent arrest of the cell cycle in G0/G1 phase of the cell cycle and apoptosis following extract treatment in MCF-7 (WT-p53) and MDA-MB-231 (mutant-p53) human breast cancer cell lines with a markedly reduced effect on primary human mammary epithelial cells. Analysis of p53 protein expression and of its downstream transcription targets, p21 and BAX, revealed a p53 associated growth arrest within 5 hours of extract treatment and apoptosis within 24 hours. DNA double strand breaks measured as ?-H2AX were detected early in both MCF-7 and MDA-MB-231 cells. However, loss of cell viability was only partly due to a p53-driven response; as MDA-MB-231 and p53-knockdown MCF-7 cells both underwent cell cycle arrest and death following extract treatment. p53-independent growth arrest and cytotoxicity following DNA damage has been previously ascribed to FOXO3a expression. Here, in MCF-7 and MDA-MB-231 cells, FOXO3a expression was increased significantly within 3 hours of extract treatment and FOXO3 siRNA reduced the extract-induced loss of cell viability in both cell lines. Conclusions/Significance - Our results demonstrate for the first time that an aqueous extract of Fagonia cretica can induce cell cycle arrest and apoptosis via p53-dependent and independent mechanisms, with activation of the DNA damage response. We also show that FOXO3a is required for activity in the absence of p53. Our findings indicate that Fagonia cretica aqueous extract contains potential anti-cancer agents acting either singly or in combination against breast cancer cell proliferation via DNA damage-induced FOXO3a and p53 expression.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have shown previously that a sequence-specific DNA-binding protein based on the Lac repressor protein can isolate pre-purified DNA efficiently from simple buffer solution but our attempts to purify plasmids directly from crude starting materials were disappointing with unpractically low DNA yields. We have optimized tbe procedure and present a simple affinity methodology whereby plasmid DNA is purified directly by mixing two crude cell lysates, one cell lysate containing the plasmid and the other the protein affinity ligand, without the need for treatment by RNaseA. After IMAC chromatography, high purity supercoiled DNA is recovered in good yields of 100-150 μg plasmid per 200 mL shake flask culture. Moreover, the resulting DNA is free from linear or open-circular plasmid DNA, genomic DNA, RNA, and protein, to the limits of our detection. Furthermore, we show that lyophilized affinity ligand can be stored at room temperature and re-hydrated for use when required. © 2007 Wiley Periodicals, Inc.